$\mathrm{Ol}-\mathrm{Ni}-\mathrm{N} 1$	$171.2(1)$	$\mathrm{N} 2-\mathrm{Ni}-\mathrm{N} 3$	$89.6(1)$
$\mathrm{O} 1 — \mathrm{Ni}-\mathrm{N} 2$	$90.1(1)$	$\mathrm{N} 2-\mathrm{Ni}-\mathrm{N} 4$	$94.8(1)$
$\mathrm{O} 1 — \mathrm{Ni}-\mathrm{N} 3$	$91.7(1)$	$\mathrm{N} 3-\mathrm{Ni}-\mathrm{N} 4$	$175.6(1)$
$\mathrm{Ol}-\mathrm{Ni}-\mathrm{N} 4$	$88.0(1)$		

Table 2. Structural data and bridging (φ) and dihedral (κ) angles $\left(\AA,^{\circ}\right)$ for five homo-or hetero-dinuclear

complexes				
Complex	Bridging	$M(\mathrm{Cu}, \mathrm{Ni}) \cdots$	φ	κ
	$M(\mathrm{Cu}, \mathrm{Ni})-\mathrm{O}$ (I)	$2.030(3)-2.039(2)$	$3.0753(7)$	$98.8(1)-99.7(1)$
(II)	$1.941(5)-1.950(4)$	$2.994(2)$	$100.5(9)$	$5(1)$
(III)	$1.930(1)-1.982(9)$	$3.073(2)$	$103.5(4)$	$11.3(8)$
(IV)	$1.885(3)-1.976(3)$	$3.021(2)$	$102.8(1)$	$2.9(9)-$
				$8.0(3)$
(V)	$1.938(3)-1.995(3)$	$3.047(6)$	$103.4(1)$	$12.7(2)$

Notes: (I) present work; (II) Tahir et al. (1996); (III) Ülkü, Ercan, Atakol, Ercan \& Gencer (1997); (IV) Atakol et al. (1997); and (V) Ülkü et al. (1998).

H atoms bonded to C atoms were placed geometrically $0.95 \AA$ from their parent atoms. H -atom displacement parameters were fixed as $U_{\text {iso }}(\mathrm{H})=1.3 U_{\text {eq }}(\mathrm{C})$ and a riding model was used for all H atoms.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1993). Data reduction: MolEN (Fair, 1990). Program(s) used to solve structure: MolEN. Program(s) used to refine structure: MolEN. Molecular graphics: PLATON (Spek, 1998). Software used to prepare material for publication: MolEN.

The authors wish to acknowledge the purchase of the CAD-4 diffractometer under Grant DPT/TBAG1 of the Scientific and Technical Research Council of Turkey.

[^0]
References

Atakol, O., Ercan, F., Ülkü, D. \& Yılmaz, N. (1997). Anal. Sci. 13, 1051-1052.
Barclay, G. A. \& Hoskins, B. F. (1965). J. Chem. Soc. pp. 1979-1991.
Butcher, R. J. \& Sinn, E. (1976). Inorg. Chem. 15, 1604-1608.
Enraf-Nonius (1993). CAD-4 EXPRESS. Version 1.1. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
Kato, M., Jonassen, H. B. \& Fanning, J. (1964). Chem. Rev. 64, 99128.

Kato, M. \& Muto, Y. (1988). Coord. Chem. Rev. 92, 45-83.
Spek, A. L. (1998). PLATON. Molecular Geometry Program. University of Utrecht, The Netherlands.
Tahir, M. N., Ülkü, D., Atakol, O. \& Akay, A. (1996). Acta Cryst. C52, 2676-2678.
Tahir, M. N., Ülkü, D., Atakol, O. \& Cakırer, O. (1998). Acta Cryst. C54, 468-470.
Ülkü, D., Ancı, C., Tahir, M. N., Atakol, O. \& Tastekin, M. (1998). Anal. Sci. 14, 455-456.
Ülkü, D., Ercan, F., Atakol, O. \& Dinçer, F. N. (1997). Acta Cryst. C53, 1056-1057.
Ülkü, D., Ercan, F., Atakol, O., Ercan, I. \& Gencer, A. (1997). Acta Cryst. C53, 179-181.
Ülkü, D., Tahir, M. N., Atakol, O. \& Nazır, H. (1997). Acta Cryst. C53, 872-874.

Acta Cryst. (1999). C55, 930-932

\{[μ-Bis(salicylidene)-1,3-propanediaminato]copper(II) $\}$ diiodozinc(II) \dagger

Fillz Ercan, ${ }^{a}$ Cengiz Arici, ${ }^{a}$ Dinçer Ülkü, ${ }^{a}$ Orhan Atakol ${ }^{b}$ and Mectit Aksu ${ }^{b}$
${ }^{a}$ Department of Physics Engineering, Hacettepe University, Beytepe 06532, Ankara, Turkey, and ${ }^{b}$ Department of Chemistry, Ankara University, Tandogan 06100, Ankara, Turkey.E-mail: dulku@eti.cc.hun.edu.tr
(Received 5 October 1998; accepted 15 February 1999)

Abstract

The title compound, $\left[\mathrm{CuZnI} \mathrm{I}_{2}\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right]$, is a doubly oxygen-bridged hetero-dinuclear complex, with the $\mathrm{Cu}^{\mathrm{II}}$ ion in a distorted square-planar environment involving two O and two N atoms from the bis(salicylidene)-1,3-propanediaminate (SALPD ${ }^{2-}$) ligand. The $\mathrm{Cu} \cdots \mathrm{Zn}$ distance is 3.0933 (7) \AA. The coordination sphere around the Zn centre is a distorted tetrahedron comprising two bridging O atoms and two terminal iodides.

Comment

The present work is an extension of our structural studies of doubly oxygen-bridged dimeric homoor heteronuclear metal complexes, of which $\left[\mathrm{Cu}_{2} L_{2}\right]$ [L is 4-(2-hydroxybenzylimino)-2-hydroxy-2-pentene (Ülku et al., 1998)] and structures referenced therein are recent examples.

Structures with double oxygen bridges are of interest because they have unusual magnetic moments due to the superexchange interactions over the O atoms. Similar dimeric complexes have been investigated previously (Kato et al., 1964; Barclay \& Hoskins, 1965; Butcher \& Sinn, 1976; Kato \& Muto, 1988; Albada et al., 1995).

(I)

The copper(II) centre in (I) has a distorted squareplanar environment and is coordinated by the two $\mathrm{N}[\mathrm{Cu}-\mathrm{N} 1 \quad 1.963(7)$ and $\mathrm{Cu}-\mathrm{N} 2 \quad 1.969(6) \AA$) and two $\mathrm{O}[\mathrm{Cu}-\mathrm{O} 11.939(5)$ and $\mathrm{Cu}-\mathrm{O} 21.949(5) \AA]$ atoms of the SALPD ${ }^{2-}$ ligand [SALPD is N, N^{\prime}-bis-

[^1]© 1999 International Union of Crystallography
Printed in Great Britain - all rights reserved
(salicylidene)-1,3-propanediaminate], which form the basal plane (Fig. 1). The O1-Cu-N2 [169.9 (2) ${ }^{\circ}$] and $\mathrm{O} 2-\mathrm{Cu}-\mathrm{N} 1\left[169.4(2)^{\circ}\right]$ angles deviate from linearity by approximately 10°. The bridging angles $\mathrm{Ol}-\mathrm{Cu}-$ $\mathrm{O} 2, \mathrm{Cu}-\mathrm{Ol}-\mathrm{Zn}, \mathrm{Ol}-\mathrm{Zn}-\mathrm{O} 2$ and $\mathrm{Zn}-\mathrm{O} 2-\mathrm{Cu}$ are 78.1 (2), 103.3 (2), 75.4 (2) and $103.1(2)^{\circ}$, respectively. The $\mathrm{Cu}-\mathrm{O}-\mathrm{Zn}-\mathrm{O}$ bridging plane and the $\mathrm{O}-\mathrm{N}-$ $\mathrm{N}-\mathrm{O}$ coordination plane around the $\mathrm{Cu}^{1 \mathrm{I}}$ atom make a dihedral angle of $1.9(3)^{\circ}$, smaller than the value of 11.4 (4) ${ }^{\circ}$ obtained from another investigation (Ercan et al., 1999). The Cu^{11} atom is located 0.0173 (9) \AA out of the least-squares $\mathrm{O}-\mathrm{N}-\mathrm{N}-\mathrm{O}$ plane. The $\mathrm{Cu} \cdots \mathrm{Zn}$ distance of 3.0933 (7) \AA is long for a direct interaction and is approximately equal to that obtained from other investigations (Ercan et al., 1999; Ancı et al., 1999). The SALPD ${ }^{2-}$ ligand is not planar; the $\mathrm{Cu}-\mathrm{N} 1-\mathrm{C} 8-$ $\mathrm{C} 9-\mathrm{C} 10-\mathrm{N} 2$ chelate ring has a boat conformation. The distances of the diagonally opposite Cu and C 9 atoms from the plane defined by the remaining ring atoms are -0.0154 (9) and -0.684 (10) \AA, respectively. There are weak intermolecular contacts between the $\mathrm{Cu}^{\text {II }}$ centre, and the C13 and C14 atoms of a neighbouring dimer, with distances of $3.360(8)$ [Cu \cdots C13 ; symmetry code: (i) $-x, 1-y, 1-z]$ and 3.217 (9) $\AA\left(\mathrm{Cu} \cdots \mathrm{C} 14^{\mathrm{i}}\right)$. The coordination around the Zn^{11} centre is distorted tetrahedral involving two bridging O atoms and two terminal iodides. The bond angles range from 75.4 (2) ${ }^{\circ}$ for $\mathrm{O} 1-\mathrm{Zn}-\mathrm{O} 2$ to $119.77(4)^{\circ}$ for $\mathrm{I} 1-\mathrm{Zn}-\mathrm{I} 2$. A comparison of the dihedral angles (κ) between the bridging plane and the coordination plane around the Cu atom, together with the related distance ranges and bridging angles (φ), can be found in Table 2 for the seven dimeric metal complexes studied recently in this laboratory. The geometric details are comparable with those reported for our previous dimeric and trimeric

Fig. 1. PLATON (Spek, 1998) drawing of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small circles of arbitrary radii.
structures. The magnetic properties of these compounds are currently under investigation.

Experimental

To a solution of N, N^{\prime}-bis(salicylidene)-1,3-propanediamine $(0.282 \mathrm{~g}, 1 \mathrm{mmol})$ in hot ethanol (50 ml), ammonia solution (10 ml) was added and the mixture heated to boiling. A solution of $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.170 \mathrm{~g}, 1 \mathrm{mmol})$ in hot methanol $(20 \mathrm{ml})$ was added and the resulting mixture set aside. After 3 h , the resulting copper complex was filtered off and dried at 353 K . This complex ($0.343 \mathrm{~g}, 1 \mathrm{mmol}$) was dissolved in hot dioxane (50 ml) and $\mathrm{ZnI}_{2}(0.320 \mathrm{~g}, 1 \mathrm{mmol})$ in hot methanol $(20 \mathrm{ml})$ was added. The resulting mixture was set aside for 4 d and the green crystals which formed were filtered off and dried in air.

Crystal data

$\left[\mathrm{CuZnI} \mathrm{C}_{2}\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right]$
$M_{r}=663.05$
Monoclinic
$P 2{ }_{1} / c$
$a=13.8200(10)$. \AA
$b=9.3728$ (11) \AA
$c=15.3080(12) \AA$
$\beta=92.144(2)^{\circ}$
$V=1981.5(3) \AA^{3}$
$Z=4$
$D_{x}=2.222 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction:
empirical via ψ scans
(Fair, 1990)
$T_{\text {min }}=0.371, T_{\text {max }}=0.582$
3895 measured reflections
3577 independent reflections
Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=10.15-18.08^{\circ}$
$\mu=5.41 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Monoclinic prismatic
$0.25 \times 0.15 \times 0.10 \mathrm{~mm}$ Green

2616 reflections with

$$
\begin{aligned}
& I>\sigma(I) \\
& R_{\text {int }}=0.028 \\
& \theta_{\max }=25.22^{\circ} \\
& h=-16 \rightarrow 0 \\
& k=-11 \rightarrow 0 \\
& l=-18 \rightarrow 17 \\
& 3 \text { standard reflections } \\
& \quad \text { frequency: } 120 \mathrm{~min} \\
& \text { random variation: } 2 \%
\end{aligned}
$$

Refinement

Refinement on F
$R=0.040$
$w R=0.044$
$S=0.98$
2616 reflections
226 parameters
H atoms: see below
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=1.19 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.25 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.25 \mathrm{e}^{-3}$
Extinction correction: none
Scattering factors from International Tables for X-ray
Crystallography (Vol. IV)
$w=1 /\left[\sigma F^{2}+(0.02 F)^{2}\right.$
$+0.25]$, except $w=0$
if $F^{2}<$ cutoff $\times \sigma F^{2}$,
where cutoff is 1.0
Table 1. Selected geometric parameters ($\left({ }^{\circ},^{\circ}\right)$

$\mathrm{Cu}-\mathrm{Zn}$	$3.0933(7)$	$\mathrm{O} 2-\mathrm{Cl7}$	$1.334(8)$
$\mathrm{I}-\mathrm{Zn}$	$2.541(1)$	$\mathrm{N} 1-\mathrm{C} 7$	$1.28(1)$
$\mathrm{I} 2-\mathrm{Zn}$	$2.538(1)$	$\mathrm{N} 1-\mathrm{C} 8$	$1.47(1)$
$\mathrm{Zn}-\mathrm{Ol}$	$2.006(5)$	$\mathrm{N} 2-\mathrm{C} 10$	$1.48(1)$

$\mathrm{Zn}-\mathrm{O} 2$	2.000 (5)	$\mathrm{N} 2-\mathrm{Cll}$	1.28 (1)
$\mathrm{Cu}-\mathrm{O} 1$	1.939 (5)	C6-C7	1.44 (1)
$\mathrm{Cu}-\mathrm{O} 2$	1.949 (5)	C8-C9	1.49 (1)
$\mathrm{Cu}-\mathrm{N} 1$	1.963 (7)	C9--Cl0	1.49 (1)
$\mathrm{Cu}-\mathrm{N} 2$	1.969 (6)	$\mathrm{C} 11-\mathrm{Cl2}$	1.43 (1)
$\mathrm{Ol}-\mathrm{Cl}$	1.330 (8)		
$\mathrm{II}-\mathrm{Zn}-\mathrm{I} 2$	119.77 (4)	$\mathrm{Zn}-\mathrm{Ol}-\mathrm{Cl}$	125.8 (4)
$11-\mathrm{Zn}-\mathrm{Ol}$	113.9 (1)	$\mathrm{Cu}-\mathrm{Ol}-\mathrm{Cl}$	130.9 (5)
$\mathrm{I}-\mathrm{Zn}-\mathrm{O} 2$	111.8 (1)	$\mathrm{Zn}-\mathrm{O} 2-\mathrm{Cu}$	103.1 (2)
$12-\mathrm{Zn}-\mathrm{Ol}$	111.5 (1)	$\mathrm{Zn}-\mathrm{O} 2-\mathrm{Cl7}$	126.7 (4)
$12-\mathrm{Zn}-\mathrm{O} 2$	116.3 (1)	$\mathrm{Cu}-\mathrm{O} 2-\mathrm{Cl7}$	130.0 (4)
$\mathrm{O} 1-\mathrm{Zn}-\mathrm{O} 2$	75.4 (2)	$\mathrm{Cu}-\mathrm{N} 1-\mathrm{C} 7$	124.2 (5)
$\mathrm{O1}-\mathrm{Cu}-\mathrm{O} 2$	78.1 (2)	$\mathrm{Cu}-\mathrm{Nl}-\mathrm{C} 8$	120.8 (6)
$\mathrm{Ol}-\mathrm{Cu}-\mathrm{N} 1$	91.2 (2)	C7-N1-C8	115.0 (7)
$\mathrm{Ol}-\mathrm{Cu}-\mathrm{N} 2$	169.9 (2)	$\mathrm{Cu}-\mathrm{N} 2-\mathrm{C} 10$	122.0 (5)
$\mathrm{O} 2-\mathrm{Cu}-\mathrm{N} 1$	169.4 (2)	$\mathrm{Cu}-\mathrm{N} 2-\mathrm{C} 11$	123.2 (5)
$\mathrm{O} 2-\mathrm{Cu}-\mathrm{N} 2$	91.8 (2)	$\mathrm{C} 10-\mathrm{N} 2-\mathrm{Cll}$	114.6 (7)
$\mathrm{N} 1-\mathrm{Cu}-\mathrm{N} 2$	98.7 (3)	$\mathrm{O}-\mathrm{Cl}-\mathrm{C} 2$	120.0 (7)
$\mathrm{Zn}-\mathrm{Ol}-\mathrm{Cu}$	103.3 (2)	O1-C1-C6	121.2 (6)

Table 2. Structural data and bridging (φ) and dihedral (κ) angles $\left(\AA,{ }^{\circ}\right)$ for seven homo- and hetero-dinuclear metal complexes

Complex	$\stackrel{\text { Bridging }}{M(\mathrm{Cu}, \mathrm{Ni})-\mathrm{O}}$	$\begin{gathered} M(\mathrm{Cu}, \mathrm{Ni}) \cdots \\ M(\mathrm{Cu}, \mathrm{Zn}) \end{gathered}$	φ	κ
(I)	1.941 (5)-1.950 (4)	2.994 (2)	100.6 (2)	5 (1)
(II)	1.930 (1)-1.982 (9)	3.073 (2)	103.5 (4)	11.3 (8)
(III)	1.885 (3)-1.976 (3)	3.021 (2)	102.8 (1)	$\begin{gathered} 2.9(9)- \\ 8.0(3) \end{gathered}$
(IV)	1.938 (3)-1.955 (3)	3.047 (6)	103.4 (1)	12.7 (2)
(V)	1.973 (3)-1.974 (2)	3.1013 (7)	102.5 (1)-102.7 (1)	11.4 (4)
(VI)	2.030 (3)-2.039 (2)	3.0753 (7)	98.8 (1)-99.7 (1)	3.5 (9)
(VII)	1.939 (5)-1.949 (5)	3.0933 (7)	103.1 (2)-103.3 (2)	1.9 (3)

Notes: (I) is $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{ClNO}_{2}\right)_{2}\right]$ (Tahir et al., 1996), (II) is [$\left.\mathrm{Cu}_{2}\left(\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{2}\right)_{2}\right]$ (Ülkü et al., 1997), (III) is $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{2}\right)_{2}\right]$ (Atakol et al., 1997), (IV) is $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{2}\right)_{2}\right]$ (Ülkü et al., 1998), (V) is $\left[\mathrm{Cu}\left\{\mathrm{Zn}\left(\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{I}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}\right)\right\}\right]$ (Ercan et al.. 1999). (VI) is $\left[\mathrm{Ni}\left\{\mathrm{Zn}\left(\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{I}_{2} \mathrm{~N}_{4} \mathrm{O}_{2}\right)\right\}\right]$ (Aricl et al., 1999) and (VII) is $\left[\mathrm{Cu}\left\{\mathrm{Zn}\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{I}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right\}\right.$ (this work).

The H81, H82, H91, H92, H101 and H102 atoms were taken from difference maps, while other H atoms were placed geometrically $0.95 \AA$ from their parent C atoms. A riding model was then used for all H atoms $\left[U_{\text {iso }}(\mathrm{H})=1.3 U_{\mathrm{eq}}(\mathrm{C})\right.$]. The highest peak in the final ΔF synthesis was located $0.87 \AA$ from the I2 atom.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1993). Data reduction: MolEN (Fair, 1990). Program(s) used to solve structure: SIR in MolEN. Program(s) used to refine structure: LSFM in MolEN. Molecular graphics: PLATON (Spek, 1998). Software used to prepare material for publication: MolEN.

The authors wish to acknowledge the purchase of the CAD-4 diffractometer under grant DPT/TBAG1 of the Scientific and Technical Research Council of Turkey.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM1298). Services for accessing these data are described at the back of the journal.

References

Albada, G. A., Lakin, M. T., Veldman, N., Spek, A. L. \& Reedijk, J. (1995). Inorg. Chem. 34, 4910-4917.

Arıcı, C., Ercan, F., Atakol, O., Akay, A. \& Ülkü, D. (1999). Acta Cryst. C55, 928-930.

Atakol, O., Ercan, F., Ülkü, D. \& Yılmaz, N. (1997). Anal. Sci. 13, 1051-1052.
Barclay, G. A. \& Hoskins, B. F. (1965). J. Chem. Soc. pp. 1979-1991.
Butcher, R. J. \& Sinn, E. (1976). Inorg. Chem. 15, 1604-1608.
Enraf-Nonius (1993). CAD-4 EXPRESS. Version 1.1. Enraf-Nonius, Delft, The Netherlands.
Ercan, F., Arıcı, C., Akay, A., Atakol, O. \& Ülkü, D. (1999). Acta Cryst. C55, 925-928.
Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
Kato, M.. Jonassen, H. B. \& Fanning, J. (1964). Chem. Rev. 64, 99128.

Kato, M. \& Muto, Y. (1988). Coord. Chem. Rev. 92, 45-83.
Spek, A. L. (1998). PLATON. Molecular Geometry Program. University of Utrecht, The Netherlands.
Tahir, M. N., Ülkü, D., Atakol, O. \& Akay, A. (1996). Acta Cryst. C52, 2676-2678.
Ülkü, D., Arıcı, C., Tahir, M. N., Atakol, O. \& Tastekin, M. (1998). Anal. Sci. 14, 455-456.
Ülkü, D., Ercan, F., Atakol, O., Ercan, I. \& Gencer, A. (1997). Acta Cryst. C53, 179-181.

Acta Cryst. (1999). C55, 932-934

Bromotricarbonyl(3,3'-dimethylene-2,2'-biquinoline)rhenium(I)

Juan Guerrero, ${ }^{a}$ Sergio A. Moya, ${ }^{a}$ María Teresa Garland ${ }^{b}$ and Ricardo F. Baggio ${ }^{c}$

${ }^{a}$ Departamento de Química Aplicada, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago de Chile, Chile, ${ }^{b}$ Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago de Chile, Chile, and ${ }^{\text {C Departamento de Física, Comisión }}$ Nacional de Energía Atómica, Buenos Aires, Argentina.
E-mail: baggio@cnea.gov.ar
(Received 20 August 1998; accepted 10 December 1998)

Abstract

The mononuclear title compound, bromotricarbonyl(6,7-dihydro-13,14-diazapentaphene- N, N^{\prime})rhenium(I), [$\mathrm{ReBr}-$ $\left(\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{2}\right)(\mathrm{CO})_{3}$], presents a rhenium environment with a slightly distorted octahedral geometry: Re-C 1.905 (9), 1.909 (8) and 1.927 (6), Re-N 2.187 (6) and 2.201 (6), and $\operatorname{Re}-\mathrm{Br} 2.6295$ (12) \AA.

Comment

In the last two decades, a number of structural and coordination chemistry studies on transition metal complexes with polypyridinic ligands have been published (Guerrero et al., 1998, and references therein), the interest being driven both by their interesting photophys-

[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: OS1045). Services for accessing these data are described at the back of the journal.

[^1]: \dagger Systematic name: diiodo- $2 \kappa^{2} I-\mu-\left\{2,2^{\prime}\right.$-[1,3-propanediylbis(nitrilomethylidyne)]diphenolato $\}$ - $1 \kappa^{4} O, N, N^{\prime}, O^{\prime} ; 2 \kappa^{2} O, O^{\prime}-\operatorname{copper}(\mathrm{II})$ zinc(II).

